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NGS: MUTATIONS

I 3x109 base pairs
I We are all 99.9% similar, at DNA level
I More than 2 million SNPs
I No particular pattern of SNPs
I If a certain mutation causes a change in an amino acid, it is

referred to as non synonymous(nsSNV)
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DRIVERS AND PASSENGERS I

Cancer is known to arise due to mutations
Not all mutations are equally important!

Somatic Mutations
Set of mutations acquired after zygote formation, over and
above the germline mutations

Driver Mutations
Mutations that confer growth advantages to the cell, being
selected positively in the tumor tissue
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DRIVERS AND PASSENGERS

Drivers are NOT simply loss of function mutations, but more
than that:

I Loss of function: Inactivate tumor suppressor proteins
I Gain of function: Activates normal genes transforming

them to oncogenes
I Drug Resistance Mutations: Mutations that have evolved

to overcome the inhibitory effect of drugs
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DRIVER MUTATIONS: WHY?

Identify driver mutations −→ better therapeutic targets
But how does one zero down upon the exact set? −→
experiments are too costly, probably infeasible for 2 million+
SNPs −→ Leverage computational analysis

I Low cost of NGS comes with a heavier roadblock of data
analysis

I Searching among 2 million+ SNPs is a non-trivial, and a
computationally intensive problem

I Softwares have a low consensus ratio amongst them selves
←→ Defining a driver, computationally is non-trivial

I However there is no tool that allows one to visualise the
results on an input across the cohort of tools
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MACHINE LEARNING I
Two datasets:

I Training: Labeled dataset, containing a table of features
with mutations labelled as ”drivers/passengers”

I Test: ’Learning’ from training dataset, test the prediction
model

Table: Training Dataset

Chromosome Position Ref Alt Type
1 27822 A G Driver
1 27832 T G Driver
2 47842 G C Passenger
. . . . .
. . . . .
. . . . .
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MACHINE LEARNING II

Table: Test Dataset

Chromosome Position Ref Alt Type
1 27824 A G ?
1 47832 T G ?
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MACHINE LEARNING: FEATURE SELECTION I

Machine Learning relies on a set of features for training
Redundant features should be avoided
CHASM [1] makes use of
p(Xi) represents the probability of occurrence of an event Xi
Considering a series of events X1, X2, X3...,Xn analogous ’series
of packets’ in communication theory , the information received
at each step can be quantified on a log scale by:

1
log2(Xi)

= −log2(p(Xi)) (1)

The expected value of information from a series of events is
called shannon entropy: H(X):

H(X) = −
∑

i

p(Xi) log2 p(Xi) (2)
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MACHINE LEARNING: FEATURE SELECTION II
Mutual Information between two random variables X,Y is
defined as the amount of information gained about random
variable X due to additional information gained from the
second, Y:

I(X,Y) = H(X)−H(X|Y) (3)

Here:
X: Class Label[Driver/Passenger]
Y: Predictive Feature
and hence I(X,Y) represents how much information was
gained about the class label Y from knowledge of a feature X
Simplifying :

I(X,Y) =
∑

p(x, y)log2
p(x, y)

p(x)p(y)
(4)



INTRODUCTION SIGNIFICANT MUTATIONS VIRAL GENOME DETECION REPRODUCIBILITY CONCLUSIONS

FUNCTIONAL IMPACT I

I If a certain mutation confers an advantage to the cell in
terms of replication rate, it is probably going to be selected
while all those mutations that reduce its fitness have a
higher chance of being eliminated from the population.

I Certain residues in a MSA of homologous sequences are
more conserved than others. A highly conserved if
mutated is possibly going to cost a lot since what had
’evolved’ is disturbed!

I Scores can be assigned based on this ”conservation”
parameter.
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FUNCTIONAL IMPACT II
Figure: SIFT [?] algorithm
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Some of the common tools/algorithms used for driver
mutation prediction:

I SIFT
I Polyphen
I Mutation Assesor
I TransFIC
I Condel
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FRAMEWORK FOR COMPARING VARIOUS TOOLS I

I Different tools use different formats, give different outputs
for similar input

I Running analysis on multiple tools −→ keep shifting data
formats

I Concordance?

Polyphen2 Input

chr1:888659 T/C
chr1:1120431 G/A
chr1:1387764 G/A
chr1:1421991 G/A
chr1:1599812 C/T
chr1:1888193 C/A
chr1:1900186 T/C
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FRAMEWORK FOR COMPARING VARIOUS TOOLS II

SIFT Input

1,888659,T,C
1,1120431,G,A
1,1387764,G,A
1,1421991,G,A
1,1599812,C,T
1,1888193,C,A
1,1900186,T,C
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DRIVER MUTATIONS: TOOLS DON’T AGREE

X Axis: Condel Score Y Axis: MA Score
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Solution?:
Galaxy[?], an open source web-based platform for
bioinformatics, makes it possible to represent the entire data
analysis pipeline in an intuitive graphical interface

Figure: Galaxy Workflow polyphen2 algorithm
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Run all tools in one go:

Figure: Run all tools
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Compare all tools:

Figure: Compare all tools
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VIRAL GENOME DETECION

Cervical cancers have been proven to be associated with
Human Papillomavirus(HPV)
Cervical cancer datasets from Indian women was put through
an analysis to detect :

1. Any possible HPV integration
2. Sites of HPV integration

Who Cares?
I Replacing whole genome sequencing, by targeted

sequencing at the sites where these virus have been
detected in a cohort of samples, thus speeding up the
whole process.
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GALAXY WORKFLOW



INTRODUCTION SIGNIFICANT MUTATIONS VIRAL GENOME DETECION REPRODUCIBILITY CONCLUSIONS

Figure: Aligned HPV genomes
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REPRODUCIBILITY

I In pursuit of novel ’discovery’, standardizing the data
analysis pipeline is often ignored, leading to dubious
conclusions

I Analysis should be reproducible and above all, correct
I Parameter’s values can change the results by a big factor,

they need to be documented/logged
I Garbage in, Garbage out
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CONCLUSIONS

With the Galaxy tool box for identification of significant
mutations and the study of the science behind the methods, the
next steps would be to:

I Open source the toolbox to the community: A tool makes
little sense if it is not in a usable form, community
feedback will be used to add more tools and improve the
existing ones

I A new method for driver mutation prediction: all the
methods have low level of concordance. A new method
that takes into account the available data at all levels :
mutations, transcriptome and micro array data is possible.
With the Galaxy toolbox in place, it would be possible to
integrate information at various levels
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FUTURE WORK

I Develop an algorithm that integrates machine learning
approach with functional approach by zeroing down upon
only those attributes that are known to have an impact

I The algorithm would also account for information at other
levels: RNA expressions, Clinical data.

I Integrating information at all levels would provide a
deeper insight

I The developed Galaxy toolbox will be used a the basic
framework for integrating information
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