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introduction



rna-seq

• rna-seq involved direct sequencing of transcripts

• Resolution at the level of individual isoform of genes
• Area with ample scope of insights: biological and
computational(RNA-Seq is challenging!)

• NOTE(A common misbelief): RNA-Seq doesn’t measure what is
technically gene expression: Measures relative transcript
abundances

Pachter, Lior. ”Models for transcript quantification from RNA-Seq.” arXiv preprint
arXiv:1104.3889 (2011).
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Figure 1: A typical RNA-Seq experiment1
1Next-generation transcriptome assembly, Martin et al. Nature Reviews Genetics(2011) 4



single cell rna-seq motivation

’ Context: Studying differentiation

Transcriptional dynamics of a temporal process like cell
differentiation is challenging

• Time-series analysis of bulk cell data : hard to distinguish early
and late phases of transcriptional cascade

• Difficult to capture cell-to-cell variability

High variability arises due to high cell-to-cell variability: Simple
averages don’t work!
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digression

Which is a better treatement?

Treatments for kidney stones

Treatment A Treatment B
Small Stones Group1: 93%(81/87) Group2: 87% (234/270)
Large Stones Group3: 73%(192/263) Group 4 69% (55/80)

Hint: Is your sample size enough to draw causality relations?
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digression

Which is a better treatement?

Treatments for kidney stones

Treatment A Treatment B
Small Stones Group1: 93%(81/87) Group2: 87% (234/270)
Large Stones Group3: 73%(192/263) Group 4 69% (55/80)

Both 78% (273/350) 83% (289/350)
Reversal of inequality! : Simpson’s Paradox. Sizes of the groups
being combined are not same. Large stones patients were offered
better treatment A, small stones patients were offered treatment B.
=⇒ Stone size is a ’confounding variable’.

7



method



hypothesis

• RNA-Seq experiment constitutes a time-series: each cell is a
discrete time point (during its differentiation)

• Using an unsupervised algorithm ’Monocle’, we want to study
the temporal development of single cell

• Cell type: Skeletal myoblasts =⇒ known to undergo
well-characterised sequence of transcriptional changes

• Cultured in high serum medium, then shifted to low serum =⇒
induces differentiation
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experiment

Figure 2: a. Cell Culturing b. Sanity check with bulk RNA-seq(time=0) c.Late
stage differentiation markers d.
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experiment

• Sanity Check: Single Cell rna-seq should correlate with bulk

• Known markers such as ENO3, MYH3 are known to show
increased expression with time
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methods

• Expression profile =⇒ Represented as points in Euclidean
space Rd where d is the number of genes

• Reduce dimension: Independent Component Analysis: Like PCA,
but rather than maximising the variance, the projection ensures
that the resulting data is one of the independent components
of the data(Orthogonality still holds)

• Construct a Minimum Spanning Tree using these points in 2D.
• Find the longest path through the MST which corresponds to the
long-sequence of transcriptionally similar cells(Essentially with
non significant differential expression )

• It is possible to create a trajectory using pseudotime values: So
there are now branches + a main trajectory(ref figure)
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Figure 3: Results 13



results



method/results

• Differentiation = Two phase trajectory(differentiating) +
non-differentiating cells

• Trajectory 1: Cells selected under High Mitogen
Condition(Mitogen enhances differentiation/division)(time = 0
cells)

• Trajectory 2: 24h, 46h, 72h differentiating cells (MYOG is a known
marker for differentiation)

• Trajectory 3: Lacks myogenic markers, possibly did not originate
from the myoblasts(known to be stimulants of muscle
differentiation)
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method/results
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results

• Sanity Check: Since the collection happened at 24h, 48h. 72h, it
is possible to track the expression levels of markers: MEF2C,
MYH2 by immunofluorescence and then compare it with
pseudotime trajectory (ref Fig (d))

• Outcome: Monocle enables reconstructing the temporal
trajectory of differentiation while retaining the in vitro
differentiation kinetics

• New Insight: Find differentially expressed genes that would
otherwise have been lost in bulk RNA-seq:

General Additive models:

g(E(y)) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm)

where xi are the predictor variables. and g is link
function(log/identity) and Y belong to the exponential family, the
advantage over GLM being flexibility with nonparametric fits.
(ofcourse, less interpretable than GLM)
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more validation

• A further validation step involved clustering genes with [similar]
expression levels, with the assumption similar trends in
expression = similar biological function

• Genes downregulated early or upregulated late were found to
be GO enriched in myosis, cell cycle-exit, activation of muscle
specific proteins
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more validation

Figure 4: GO analysis of gene clusters 19



conclusion



summary

• Monocle takes an unsupervised approach to determine the
temporal trajectory for differentiating cells

• Makes it possible to identify the latent variables that often get
shadwoed with bulk RNA-Seq studies

• The GO validation step is not very convincing, the method
otherwise looks solid(there were more experimental validations
performed)

Yanai, Itai, et al. ”Similar gene expression profiles do not imply similar tissue
functions.” TRENDS in Genetics 22.3 (2006): 132-138.
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Questions?
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