Near-optimal probabilistic RNA-seq quantification

Bray and Pachter *et al.* Nature biotechnology(2016) doi:10.1038/nbt.3519

Saket Choudhary September 25, 2016

RNA-Seq Workflow

RNA-Seq Workflow

Zheng and Mortazavi(2012)

• First two steps in typical RNA-Seq processing pipeline:

- First two steps in typical RNA-Seq processing pipeline:
 - Alignment

- First two steps in typical RNA-Seq processing pipeline:
 - Alignment
 - Quantification

- First two steps in typical RNA-Seq processing pipeline:
 - Alignment
 - Quantification
- · Alignments are slow and probably not so important

It's all about compatible transcripts

- Circumvent alignment step Use information from k-mers
- Pseudoalignment: Find compatible transcripts for a read, without pinpointing where exactly it aligns

Method I

Figure 1: Reads and overlapping transcripts

Method II

Figure 2: de Bruijn Graph

Figure 3: Transcriptome - de Bruijn Graph. Node = k - mers, Path = Transcript

Method IV

Figure 4: k - mers in read = black nodes

Figure 5: Nodes can be skipped if k-mers did arise from blue transcript

Method VI

Figure 6: Intersection of k-compatibility class

Method VII

Figure 7: Quantification over a cup of coffee

• Better than Sailfish that looks up k-mers in reads into k-mers of transriptome

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns
- Psuedoalignment: Subset $S \subset T$ such that read r is compatible.

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns
- Psuedoalignment: Subset $S \subset T$ such that read r is compatible.
- Hash k-mers of reads and have a de-bruijn graph of transcriptome assembly handy

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns
- Psuedoalignment: Subset $S \subset T$ such that read r is compatible.
- Hash k-mers of reads and have a de-bruijn graph of transcriptome assembly handy
- T-DBG: nodes are k-mers , each transcript corresponds to a path and path cover induces a k-comptability class for each k-mer

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns
- Psuedoalignment: Subset $S \subset T$ such that read r is compatible.
- Hash k-mers of reads and have a de-bruijn graph of transcriptome assembly handy
- T-DBG: nodes are k-mers , each transcript corresponds to a path and path cover induces a k-comptability class for each k-mer
- T-DBG: Colors correspond to transcripts, node corresponds to k-mers, every k-mer receives a color for each transcript it occurs in

- Better than Sailfish that looks up k mers in reads into k – mers of transriptome
- Pseudoalignment: Find compatible transcript for a read, not where it exactly aligns
- Key Idea: Find comtabile transcript for a read, not where it exactly aligns
- Psuedoalignment: Subset $S \subset T$ such that read r is compatible.
- Hash k-mers of reads and have a de-bruijn graph of transcriptome assembly handy
- T-DBG: nodes are k-mers , each transcript corresponds to a path and path cover induces a k-comptability class for each k-mer
- T-DBG: Colors correspond to transcripts, node corresponds to k-mers, every k-mer receives a color for each transcript it occurs in
- Hash table stores mapping of each k-mer to the contig it is contained in