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Introduction



TFs bind to specific sets of short sequences

Wasserman, W. W., & Sandelin, A. (2004) 2/21



TFBS: Properties

• Short sequences (5-25bp)

• Proximity to TSS
( 100-1000bp)

• Degeneracy
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Separation of mutability and
selection



Phylogenetic footprinting for identifying regulatory elements

• Selective pressure causes slower evolution of regulatory
elements

• Phylogenetic footprinting – Identifying highly consered
sequences in evolutionary diverse species

• Need to explicitly model phylogenetic relationship over simple
conservation based approaches

Tagle et al. (1988) 4/21



Substitution Models

• Evolution can be modeled as a continuous time markov chain.
Transition Matrix P(t) = {Pαβ}

• Rate matrix Q =

(
∗ µAC µAG µAT

· · ·

)
• pα(t+ δt) = pα(t) +

∑
β ̸=α µβαpβ(t)−

∑
β ̸=α µαβpα(t)

• P(t) = exp(Qt)
• Simple models

• Jukes Cantor (JC69): Equal base frequencies and equal mutation
rates

• Kimura (K80): Distinguishes between transition and transversion
ratios

• Felenstein (F81): Allows different base frequencies
• HKY: Kimura+Felenstein

5/21



Halpern BrunoModel : Accounting for position specific selection

• Substitution v/s Mutation : Different things
• JC/K80/F81: Do not explicitly differentiate mutation from
selection

• HB Model:

riαβ︸︷︷︸
Substitution rate

= µαβ︸︷︷︸
Probability of mutation(inst.)

×

Probability of fixation︷︸︸︷
fiαβ

• ‘Position-specific selection aware’ substitution model, originally
formulated for amino acids

• All positions in the binding site evolve independently at equal
rates

• Covariation structure between different species are ignored

6/21



Halpern Bruno Model : Estimating fixation probability

riαβ = µαβ × fiαβ

• Selection coefficient(s) – Relative reduction in contribution of β
over α to fitness

F(α) = 1; F(β) = 1+ s

• Kimura’s fixation probability: fαβ = 1−e−2(F(β)−F(α))

1−e−2N(F(β)−F(α)) =
1−e−2s

1−e−2Ns

• Weak-mutation approximation(s << 1): fαβ ≈ 2s
1−e−2Ns ,

fβα ≈ −2s
1−e2Ns

• Reversibility condition:
παµαβfαβ = πβµβαfβα =⇒ πβµβα

παµαβ
=

fαβ

fβα
= e2Ns

• fαβ ∝
ln

πβµβα
παµαβ

1−
παµαβ
πβµβα

=⇒ rαβ = µαβ

ln
πβµβα
παµαβ

1−
παµαβ
παµβα
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TFBS Prediction: Using HB Model over background

Modeling full phylogeny as one component: HB or JC/F81/HKY.
F(x|θ) = log P(S|HB)

log P(S|JC)

8/21



HB model: Example with aligned sequences

S1

Sr

S2

ψi

α

A

MSA of Orthologous Sequences

P(ψi) =
∑
α

P(ψi, Ai = α|θ)

=
∑
α

P(Ai = α)P(ψi|Ai = α, θ)

=
∑
α

P(Ai = α)
∏
si

P(si|Ai = α, θ)

S = {ψ1, ψ2, . . . , ψL};

ψi = {si1, si2, . . . , siN}
A = Unobserved ancestral sequence
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Site Level Selection



Selection acting on whole TFBS as a unit

• Substitution rates are position specific in TFBS but
independence assumption does not necessarily hold

• Intuition: A TFBS will retain functionality if it is close enough to
optimality even if a crucial nucleotide undergoes substitution
(and eventually getting fixed)

• The same substitution in a far less optimal site might lead to a
functional loss

• A better model would be to account for substitution of entire
site i.e. site-level selection treating binding sites as evolutionary
units

• How: Reformulate the previous problem for two sites a,b
instead of bases

10/21
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Functional Turnover



TFBS Turnover

Functional turnover: TFBS can be gained or lost during evolution

11/21



Functional turnover: Birth & Death Process

Aim: Detect lineage-specific rates of TFBS evolution and the branch
of origin of individual TFBS

• Binding sites are known to show turnover: TFBS can be
gained/lost during speciation events

• Estimate rate of birth α and death β from orthologous
sequences

• Infer ancestral states; branch of origin
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Functional turnover: Birth & Death Process

w(t) = Probability that TFBS exists at time t
α, β = Birth, death rate respectively

w(t+ 1) = α(1− w(t)) + (1− β)w(t)
w′(t) = α− (α+ β)w(t)

We formulate two type of solutions, u(t), v(t) such that: u(t)
represents those class of motifs present at t = 0 and v(t) represents
class of motifs that did not exist at t = 0.

13/21



Functional turnover: Birth & Death Process

Let pij(t) represent the probability of observing j motif occurrences
after t , initial i

u(t) = 1
α+ β

(α+ βe−(α+β)t)

v(t) = α

α+ β
(1− e−(α+β)t)

• At each node calculate the likelihood of observing daughter
nodes given α, β

• Determine most likely ancestral state using MLE
• Infer branch of origin

14/21



(Lineage/Specie) specific models



Full phylogeny evolving following motif model
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Full phylogeny evolving following background model
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Lineage Specific Evolution
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Specie Specific Evolution
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Lineage Specific Evolution

Lineage specific model

19/21



Lineage Specific Evolution: Model

• Explicitly model functional turnover long Tf as a JC substitution
process

Pf =
(

1
2 +

1
2e

−2β 1
2 −

1
2e

−2β

1
2 −

1
2e

−2β 1
2 +

1
2e

−2β

)
β = branch length

• Conditioning on TFBS functionality to model nucleotide
substitution

• Capture function-specific evolution in every lineage
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Summary

• HB model accounts for selection in TFBS evolution
• HB model can be extended to allow TFBS as a unit of evolution
• Turnovers can be treated in birth-death framework
• More general models can account for turnover and functional
dependency across lineages
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Questions?

21/21



Ornstein-Uhlenbeck Model I

• HB models neglects lineage or specie specific selection
• OU models this gap by accounting for lineage/specie specific
selection by requiring regime specific optima to be obtained

• OU models can model evolution by defining a quantitative trait
as a score attached to the TFBS: X(t)

• Motivation: Account for the optima in the phylogeny regime
assuming the change in optima coincide with phylogenetic
branch points

• X(t) evolves by two components one deterministic(selection),
other stochastic (mutation)



Ornstein-Uhlenbeck Model II

dX(t) = α(θ − X(t)) + σdB(t)
α = Strength of selection

θ − X(t) = Distance from optimum value
σ = strength of random drift

dB(t) = random white noise

Farther the TFBS from ‘optimum’ =⇒ higher the selection force



Ornstein-Uhlenbeck Model: Multivariate normal

s Time T

s1

s2

s1, s2 – BM

E[X(t)] =
(
θ0
θ1

)

Σ = σ2

(
T s
s T

)

s Time T

s1

s2

s2 – new optimum
regime, s1 – ancestral

E[X1(T)] = θ0e−αT + θ1(1− e−αT)

E[X2(T)] = θ0e−αT + θ1e−α(T−s)(1− e−αs)

+ θ2(1− e−α(T−s))



Jukes Cantor / HKY / F81 I

Jukes Cantor

Q =


− 3µ

4
µ
4

µ
4

µ
4

µ
4 − 3µ

4
µ
4

µ
4

µ
4

µ
4 − 3µ

4
µ
4

µ
4

µ
4

µ
4 − 3µ

4



P =


1
4 +

3
4e

−tµ 1
4 −

3
4e

−tµ 1
4 −

3
4e

−tµ 1
4 −

3
4e

−tµ

1
4 −

1
4e

−tµ 1
4 +

3
4e

−tµ 1
4 −

1
4e

−tµ 1
4 −

1
4e

−tµ

1
4 −

1
4e

−tµ 1
4 −

1
4e

−tµ 1
4 +

3
4e

−tµ 1
4 −

1
4e

−tµ

1
4 −

1
4e

−tµ 1
4 −

1
4e

−tµ 1
4 −

1
4e

−tµ 1
4 +

3
4e

−tµ
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Lineage Specific Evolution

Ancestor = background =⇒ evolution independent
Ancestor = motif =⇒ TFBS evolves as unit
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